Train training = Train(trainSentences, trainTags)

writeOutput(unseenPunishment, training, testSentences, outputLocation)

testTags))

.println(checkTest(outputLocation

System.

The Lines of code above create probability maps based on the files trainSentances and
trainTags. These maps are then used to predict the part of speech (POS) corresponding to each
word in the file testSentences. The predicted POS are then written into an output file called
outputLocation. The accuracy of the predictions in this file are then tested against an answer
key file called testTags.

Test Results (POS Prediction Accuracy)

Unseen Unseen Unseen Unseen Unseen
punishment = | punishment = | punishment = | punishment = | punishment =
-100 -75 -50 -25 -0
Test Viterbi iterbi Viterbi Viterbi Viterbi
sentences = | correctly correctly correctly correctly correctly
brown-test-se | tagged tagged tagged tagged tagged
ntences.txt 35109/36394 | 35109/36394 | 35109/36394 | 35109/36394 | 2260/36394
parts of parts of parts of parts of parts of
speech speech speech speech speech
(96.4691982 | (96.4691982 |(96.4691982 |(96.4691982 | (6.20981480
1948673% of | 1948673% of | 1948673% of | 1948673% of |4638127% of
words). words). words). words). words).
Test Viterbi Viterbi Viterbi Viterbi Viterbi
sentences = | correctly correctly correctly correctly correctly
simple-test-s | tagged 32/37 | tagged 32/37 |tagged 32/37 |tagged 32/37 |tagged 9/37
entences.txt | parts of parts of parts of parts of parts of
speech speech speech speech speech
(86.4864864 | (86.4864864 |(86.4864864 |(86.4864864 |(24.3243243
8648648% of | 8648648% of | 8648648% of | 8648648% of | 24324323%
words). words). words). words). of words).

The Ideal Unseen Punishment

- Unseen Punishment is the probability used by the viterbi algorithm to approximate the
likelihood that a word it is encountering is being used as a POS that it has never seen it
be used as before.

The predictions of brown-test-sentences.txt reached their greatest accuracy with an Unseen
Punishment of -16

- Accuracy: 35116/36394 correct predictions

The predictions of simple-test-sentences.txt reached their greatest accuracy with an Unseen
Punishment of any number <= -5
- Accuracy: 32/37 correct predictions

Conclusions: The greater the size of the training file the smaller the ideal unseen punishment.
This makes sense because the less words an algorithm has encountered in training, the more
likely it is to encounter something new when taking input and vice versa.

Example Sentences:

e The/DET quick/ADJ brown/NP fox/NP jumped/VD over/P the/DET log./N

e |/PRO ate/VD pasta/ADV for/P dinner./DET

e |/DET pet/N my/PRO dog./V
Here are a few example sentences with we tested our program with when it was trained by the
brown files. As you can see, it is fairly accurate in tagging adjectives and pronouns, but often
gets proper nouns and nouns mixed up and is otherwise not extremely accurate. This program
is good at tagging the bulk of words but lacks precision for the minority.

Testing the training method:

- To ensure the accuracy of our training and the resulting Emission and Transition Maps
which both hold <String<String, Double>> we first made our maps hold only occurrences
and not probabilities. We then tested our training method on small handmade input files
and printed out our maps. We were then able to count by hand the number of
occurrences of a word as a POS as well as the number of transitions from one POS to
another and see that our method was collecting information from the input files
accurately. We then added to our method and went item by item, changing occurrence
counts into probabilities.

Hard-Coded Testing:
For our hard-coded tests, we hard-coded the map we went over in drill into transmission and
emission maps.

chase: 10

cat: 4
dog: 4
watch: 2

Emission Map:

{NP={chase=0.0}, V={watch=-0.5108256237659907, get=-2.3025850929940455,
chase=-1.2039728043259361}, CNJ={and=0.0}, N={watch=-1.6094379124341003,
cat=-0.916290731874155, dog=-0.916290731874155}}

Transmission Map:

{NP={V=-0.2231435513142097, CNJ=-1.6094379124341003}, #={NP=-1.203972804 3259361,
N=-0.35667494393873245}, V={NP=-0.916290731874155, N=-0.916290731874155,
CNJ=-1.6094379124341003}, N={V=-0.2231435513142097, CNJ=-1.6094379124341003},
CNJ={NP=-1.6094379124341003, V=-0.916290731874155, N=-0.916290731874155}}

Because the data set here was very limited, we had low expectations for results. Although the
viterbi algorithm was able to correctly identify parts of speech when given combinations of
words that it was trained with (e.g. “cat chase dog” is correctly identified as [N, V, N]), it
struggles to identify parts of speech of words it has never seen. For example, “Logan ran and
jumped” is identified as [N, V, CNJ, V]. Still this exercise reminded us better of how the viterbi
algorithm works when it sees new words — Viterbi guesses the next POS solely based on what
the most likely transition from the current POS is (the unseen punishment creates a level
playing field across all POS it could transition to).

